Физико-химические способы обработки

Анодно-механическая обработка является процессом воздействия на металл, основанным на электрохимическом растворении последнего с его механическим удалением; дополнительно может иметь место еще и электроэрозионное разрушение. Принципиальная схема процесса обработки показана на рис. 248. При сближении электродов 3 (обрабатываемое изделие) и 1 (инструмент) и при наличии между ними электролита (рабочей жидкости) 2 во время прохождения тока происходит разрушение электрода, соединенного с положительным источником тока (анодом). Это разрушение при низких плотностях тока происходит в виде анодного растворения металла, а при высоких плотностях в виде его электроэрозионного разрушения. Образующиеся продукты распада 4 плохо проводят ток и изолируют один электрод от другого. Для удаления их осуществляют движение электрода 1 (инструмента) с небольшим усилием. В этом случае процесс протекает непрерывно, обнажающийся материал продолжает разрушаться, и требуемая обработка осуществляется независимо от его твердости.

Процесс анодно-механической обработки зависит от электрического режима (плотности тока, напряжения) и механических параметров (давления на обрабатываемую поверхность, скорости движения инструмента). На рисунке (см. выноску /) показана одна из предполагаемых схем процесса.

Электролитический режим определяет производительность процесса и качество обработанной поверхности. Напряжение источника тока обычно составляет 14—28 В, плотность тока в А/см2 колеблется от десятых долей на чистовых операциях до нескольких сотен на черновых.

Давление инструмента р обусловливает величину межэлектродного зазора 5 и связанного с ней электрического сопротивления. Зависимость между р и 5 определяет съем металла, силу тока и рабочее напряжение.

Скорость перемещения инструмента относительно обрабатываемой поверхности влияет на скорость и степень нагрева поверхностного слоя металла заготовки и соответственно на его структурные изменения, а также на шероховатость поверхности. Скорость инструмента составляет 0,5 — 25 м/с, а сила его прижима 50-200 кПа (0,5-2 кгс/см2). Наилучший состав рабочей жидкости — раствор жидкого стекла (силиката натрия) в воде.

Анодно-механическая обработка характеризуется: малым износом электрода-инструмента относительно электрода-заготовки, обычно не превышающим 20 — 30% на грубых и 2-3% на чистовых режимах; высокой производительностью на грубых режимах, достигающей 35-100 мм3/с при шероховатости поверхности Rz — 500 - 600 мкм, и малой шероховатостью поверхности на мягких режимах, достигающей Rz < 1 мкм при небольшой производительности (около 0,01 мм3/с).

На рис. 249, а показана схема анодно-механического долбления, а на рис. 249, б — схема анодно-механической резки металлов. Долблением обрабатывают отверстия разнообразной формы в деталях из твердого сплава и закаленной стали твердостью HRC 60-65.

Электрохимическая обработка материалов основана на химических процессах, возникающих в результате прохождения электрического тока через цепь, образованную проводниками (электродами) и находящейся между ними проводящей ток жидкостью (электролитом). При электрохимической обработке происходит растворение и удаление некоторых количеств металла с обрабатываемой заготовки и их переход в неметаллическое состояние (химические соединения) (рис. 250, а).

Поддержание заданной плотности тока — одно из важнейших условий правильного ведения процесса. Скорость растворения находится в прямой зависимости от плотности тока.

Большинство материалов хорошо обрабатываются на установках, питаемых постоянным током. Однако в некоторых случаях, например при обработке нержавеющей стали, целесообразно применение импульсного тока. Процесс остается устойчивым, а шероховатость поверхности снижается (улучшается) при замене постоянного тока однополупериодным выпрямленным током.

Наиболее распространен в качестве электролита раствор хлористого натрия ввиду его низкой стоимости и длительной работоспособности. Физические и химические свойства электролитов, важнейшими среди которых являются электропроводность и вязкость, оказывают влияние на характер протекания и результаты процесса.

Электрохимическая размерная обработка характеризуется: малой шероховатостью обработанной поверхности, высокой производительностью, достигающей 1000 мм3/с, большой энергоемкостью процесса — 1000 А-ч на 1 кг снятого металла. Метод используется в основном при образовании отверстий и полостей, при профилировании и формообразовании копированием, для удаления заусенцев и грата, при резке и долблении. На рис. 250,6 приведена принципиальная схема электрохимической обработки турбинных лопаток.

© Проект «Ростовский станок»

Наши услуги:

  • восстановление изношенных деталей;
  • цветной и нержавеющий прокат со склада в Ростове-на-Дону;
  • механическая обработка металлов( токарные и фрезерные работы);
  • изготовление валов,валков,подшипников скольжения,втулок(баббитовых,бронзовых,латунных,фторопластовых) и др. деталей по вашим чертежам или изделиям.
"Российское станкостроение" 2000-2011. Россия, г.Ростов-на-Дону ул.Орская 9 тел.(863) 290 88 31, 290 88 30, г.Москва ул. Яна Райниса 18
Продажа б/у станков в Ростове
Rambler's Top100 рейтинг@Mail.ru

Warning: include_once(/var/www/u0620652/data/www/rstanok.ru/includes/globalr_seo.php): failed to open stream: No such file or directory in /var/www/u0620652/data/www/rstanok.ru/template/banners.php on line 58

Warning: include_once(): Failed opening '/var/www/u0620652/data/www/rstanok.ru/includes/globalr_seo.php' for inclusion (include_path='.:') in /var/www/u0620652/data/www/rstanok.ru/template/banners.php on line 58