Фрезерные станки и делительные головки

Назначение, классификация и область применения станков фрезерной группы.

В станках шестой (фрезерной) группы (по классификации ЭНИМС) инструмент имеет вращательное движение резания, а движения подачи чаще всего получает заготовка, закрепленная на столе или барабане станка. Станки имеют много разновидностей: вертикальные и горизонтальные консольные, непрерывные, копировальные, бесконсольные вертикальные, широкоуниверсальные, продольные и др. Обычные фрезерные станки предназначены для работы насадными, торцовыми, концевыми и другими фрезами при обработке плоскостей, пазов, канавок и т. п.

В основу классификации станков фрезерной группы положены следующие признаки: положение оси шпинделя, выполняемая работа, конструктивные особенности стола, траверсы, наличие программного управления и некоторые другие. Различают:

1. Вертикально-фрезерные консольные станки; предназначены для выполнения широкого круга фрезерных работ, выполняемых торцовыми, концевыми и другими фрезами, которые крепятся в цанговых патронах и на оправках, оставляющих свободными цилиндрическую и торцовую по-, верхности фрезы. Отличительной приметой этих станков является вертикальное расположение шпинделя и наличие консоли — выступающей корпусной детали, поддерживающей стол с заготовкой и осуществляющей их подъем и спуск. Станки позволяют использовать режущие свойства быстрорежущего и твердосплавного инструмента. Заготовки устанавливаются на прямоугольные столы размером от 200 х 800 до 630 х 1600 мм или круглый накладной стол диаметром 320 мм и более.

На ряде этих станков возможно как встречное, так и попутное фрезерование, что обеспечивается специальным механизмом, поддерживающим постоянный натяг между винтом и гайкой механизма продольной подачи. Подача может выключаться от упоров и вручную. Ряд станков имеет преселективные устройства для включения новой подачи или новой частоты вращения шпинделя, автоматизированные циклы обработки заготовок в серийном производстве, поворот шпинделя в пределах ± 45° относительно горизонтальной оси и т. п. Станки этого вида удобны для перевода на числовое программное управление. Некоторые станки имеют повышенную быстроходность, что позволяет производительно обрабатывать заготовки из легких сплавов.

Рассматриваемые станки относятся к первому типу фрезерных станков, что находит отражение в обозначении модели: 6Н11, 6А12Р, 6С12Ц и т. д.

2. Станки непрерывного фрезерования бывают карусельно-фрезерные, у которых стол с заготовками (карусель) поворачивается относительно вертикальной оси, и барабанно-фрезерные, с горизонтальной осью поворота барабана (стола) также при круговой подаче. Станки применяют в условиях серийного и массового производства, причем часто загрузка-выгрузка заготовок на карусель или барабан осуществляется на ходу, без. их остановки. Отдельные станки имеют больше одного шпинделя. Коробка скоростей таких станков зачастую включает сменные колеса, которые подбираются для обработки конкретной заготовки. Есть станки и с обычной коробкой скоростей.

Эти станки относятся ко второму типу фрезерных станков, например, модели 621М, 6М23, 6А23 и др.

3. Копировально-фрезерные станки выполняются универсальными и специализированными, для обработки конкретной детали (шинных пресс-форм, профиля плоских шаблонов, лонжеронов, лопаток турбин и т. п.). Универсальные копировальные станки позволяют делать гравировку или изготовлять штампы, матрицы, пресс-формы и другие детали с рельефными поверхностями и контурами. Собственно копирование осуществляется по разметке с ручным управлением, по плоскому шаблону, по объемной модели (из гипса, дерева, металла), по программе, записанной на магнитной пленке, или по копиру. Станки этого типа работают специальными или обычными стандартными фрезами.

К четвертому типу станков относятся модели 6Л463, 6А426, 6М42К, 6441Пр и др.

4. Продольно-фрезерные станки, одностоечные и двухстоечные, с одним или несколькими шпинделями позволяют фрезеровать вертикальные, горизонтальные и наклонные плоскости, пазы и т. п. на самых длинных и крупных заготовках (массой до 30 т) или группы заготовок одновременно в условиях серийного производства с применением быстрорежущих и твердосплавных цилиндрических, торцовых, концевых, дисковых, угловых и фасонных фрез. Некоторые станки позволяют вести встречное и попутное фрезерование, а также фрезерование по полуавтоматическому циклу: подвод фрезы — фрезерование — останов — разгрузка — возврат фрезы в исходное положение — загрузка и т. д. Оптимальные режимы фрезерования устанавливаются путем бесступенчатого регулирования частоты вращения шпинделя и величины подачи. Значительные припуски обрабатываемых заготовок приводят к образованию стружки, которая отводится вибротранспортером. Одной из главных характеристик станков этого видаявляется площадь стола; у серийных станков она определяется габаритами от 400 х 1250 мм (мод. 6304 одностоечная) до 2500 х 8000 мм (мод. 6625 двухстоечная).

Шестой тип станков включает модели 6604, 6605, 6606, 6Г608 и другие двухстоечные станки (одностоечные стайки относят к третьему типу).

5. Широкоуниверсальные фрезерные станки могут работать с горизонтальным, наклонным или вертикальным расположением одного или двух шпинделей при обработке средних по величине деталей различной формы цилиндрическими, дисковыми, торцовыми фрезами и набором фрез. Эти станки оснащаются большим набором принадлежностей: угловыми и круглыми столами, тисками, делительными головками и столами, быстроходными головками и т. п.. Стол станка имеет размеры от 200 х 500 мм (мод. 675) до 400 х 1600 мм (мод. 6М83Ш). Станки находят применение в условиях единичного и серийного производства.

К седьмому типу станков относятся модели 675, 675П, 676П и др.

6. Горизонтально-фрезерные консольные станки отличаются наличием консоли и горизонтальным расположением шпинделя при обработке цилиндрическими, угловыми и фасонными фрезами плоских и фасонных поверхностей заготовок из различных материалов. Могут также использоваться торцовые и концевые фрезы. Универсальные станки этого вида отличаются тем, что их стол может поворачиваться относительно вертикальной оси ±45°, что позволяет вести обработку винтовых канавок на цилиндрических поверхностях с использованием делительной головки. Столы этих станков имеют размер от 160 х 630 мм (мод. 6Н80Г) до 400 х х 1600 мм (мод. 6М83) и имеют продольные Т-образные пазы для установки различных приспособлений. Ширина этих пазов обычно 14—28 мм. Этот размер следует учитывать при подборе или конструировании приспособления.

К восьмому типу относятся модели 6Н804Г, 6Н81Г, 6М83Г и др.

7. Разные станки фрезерной группы включают металлорежущее оборудование, предназначенное для обработки конкретных заготовок или видов поверхностей: резьбофрезерные, шпоночно-фрезерные, шлицефрезерные, а также станки для обработки шлицев корончатых гаек, канавок спиральных и центровочных сверл, канавок шпоночных и дисковых фрез, плоскостей слитков и т. д.

Основные узлы и рабочие движения консольных станков. Консольные фрезерные станки отличаются от бесконсольных устройством механизма вертикальной подачи: консоль, несущая стол станка, имеет возможность вертикального перемещения (рис. 153,а). У бесконсольных станков вертикальную подачу совершает шпиндельная бабка (рис. 153,6). Исследования показывают более высокую точность бесконсольных (горизонтальных и вертикальных) станков. Для повышения точности станков консольного типа применяют специальные поддержки 8, скрепляющие консоль 11 с хоботом 7 станка (рис. 154).

Универсально-фрезерный консольный станок мод. 6М82, показанный на рис. 154, предназначен для фрезерования заготовок из стали, чугуна и цветных металлов твердосплавными и быстрорежущими фрезами. Шпиндель 5 станка расположен горизонтально. Станок имеет электродвигатель 3 привода вращения шгатдеття с фрезой и электродвигатель подачи 13.

Изменение частоты вращения шпинделя посредством коробки скоростей 4, расположенной внутри станины 2, и величины подачи стола с помощью коробки подач 14, находящейся внутри консоли 11 станка, осуществляется преселективно, т, е. поворотом лимба без прохождения промежуточных ступеней.

Стол перемещается в трех взаимно перпендикулярных направлениях с рабочими подачами Sпрод, Sпоп, sb и ускоренно.

Стол 9 универсального станка может поворачиваться относительно вертикальной оси, что позволяет обрабатывать винтовые канавки сверл, червяков и т. п. Станок покоится на фундаментной плите 1. Стол перемещается в направляющих поворотной плиты 10, расположенной на поперечных салазках 12. Оправка с фрезой поддерживается подвесками 6, перемещаемыми на хоботе 7 станка.

Технологические возможности станка могут быть расширены применением делительной головки, поворотного круглого стола и накладной- универсальной головки. Станок может быть настроен на ряд автоматических циклов.

Горизонтальный станок отличается от описанного отсутствием возможности поворота стола, а вертикальный также и компоновкой шпиндельного узла (см. рис. 153,а).

На консольных фрезерных станках обрабатывают вертикальные, горизонтальные и наклонные плоскости, пазы, углы, уступы и т. п.

Вспомогательный инструмент и нормальные приспособления станков. Приспособления для закрепления режущего инструмента на фрезерных станках или вспомогательные инструменты фрезерных станков позволяют устанавливать на станке насадные, хвостовые, концевые фрезы и фрезерные головки. Конструкция вспомогательного инструмента зависит от конструкции крепежно-присоединительной части фрезы, оформления присоединительных элементов станка, соотношения размеров фрезы и шпинделя и ряда других факторов.

Фрезы, имеющие цилиндрический хвостовик, закрепляются в цанговые или других центрирующих ось фрезы патронах, а сам патрон крепится в шпинделе станка. Фрезы с коническим хвостовиком могут крепиться непосредственно в шпинделе или через втулку. Следует отметить, что конус шпинделя ряда станков имеет конусность 7:24, при этом угол конуса превышает угол трения втулки о шпиндель и соединение становится несамотормозящим, что требует принудительной затяжки инструмента в отверстие шпинделя. Эта затяжка осуществляется так называемым шомполом, т. е. длинной шпилькой, ввернутой в резьбовое отверстие хвостовика фрезы. Крутящий момент передается со шпинделя через сухари и торцовые пазы втулки на корпус фрезы.

Насадные фрезы своим отверстием базируются на оправке. При консольном расположении фрезы крутящий момент передается продольной шпонкой, а винт закрепляет фрезу на оправке. Цилиндрические насадные фрезы закрепляются на длинной оправке. Положение набора фрез вдоль оси фиксируется также установочными кольцами (рис. 155). Оправка 5 одним концом крепится в шпинделе 1, а другим — в серьге или подвеске станка. Двухопорное закрепление повышает жесткость технологической системы. При работе набором фрез для регулировки расстояния между фрезами иногда используется раздвижное кольцо 3.

Торцовые фрезы большого диаметра (свыше 250 мм) крепятся на шпинделе четырьмя винтами, центрируются пояском шпинделя, а крутящий момент передается двумя торцовыми шпонками.

Станочные приспособления используются для установки заготовок на столе, т. е. для ориентации заготовки относительно координатных осей и для надежного закрепления ее в этом положении.

Для фрезерных станков характерно широкое применение таких универсальных приспособлений, как станочные тиски, столы, делительные головки и элементарные зажимные устройства (рис. 156). В условиях серийного и массового производства применяют специальные приспособления для обработки конкретной заготовки или группы заготовок. В ряде случаев используют дополнительные устройства, расширяющие технологические возможности фрезерных станков: головки, изменяющие положение шпинделя, что позволяет работать фрезой с горизонтальной или вертикальной осью; головки, позволяющие долбить заготовку, вести копировальные работы на обычных фрезерных станках и т. п.

Станочные тиски могут иметь, кроме винтовых, зажимные элементы в виде эксцентриков, пневматических камер, гидравлических цилиндров, пружин, рычагов и т. п. Различают тиски неповоротные и поворотные относительно двух взаимно перпендикулярных осей. Тиски обеспечивают надежное, быстрое закрепление заготовки при малых собственных размерах и высокой жесткости. Известны тиски с одной подвижной губкой, самоцентрирующие (с двумя подвижными губками), с “плавающими” губками и т. п. В ряде случаев применяют специальные губки, по форме зажимной поверхности для закрепления заготовок сложной формы (цилиндрических, для лопаток турбин и т. п.).

Делительные головки предназначены для разделения окружности заготовки на равные или неравные части, нарезания винтовых поверхностей различной крутизны и обработки некоторых типов кулачков. Крепление заготовки осуществляется в патроне, цанге или центрах.

Делительные головки бывают одно- и многошпиндельные, механические и оптические. Последние чаще применяют для контрольных операций. Все механические делительные головки разделяют на лимбовые и бсзлимбовые, а по принципу действия — на непосредственного, простого и дифференциального деления.

Головки непосредственного деления имеют на одном шпинделе патрон или центр для закрепления заготовки и делительный диск с нужным числом пазов или отверстий, в которые входит фиксатор. Здесь все погрешности делительного диска (по углу) передаются фрезеруемым поверхностям, поэтому эти головки применяют при широком поле, допуска на угол. Универсальные делительные головки позволяют осуществлять наиболее сложные фрезерные операции, включая обработку кулачков. Они обеспечивают поворот заготовки на любой угол, а шпиндель такой головки может занимать любое положение от горизонтального до вертикального, что позволяет нарезать канавки как на цилиндрической, так и на конической и торцовой поверхностях.

Простое деление на универсальной делительной головке (рис. 157) отличается от непосредственного тем, что передача между заготовкой и делительным диском осуществляется через червячную пару, т. е. червяк с /с заходами и червячное колесо с zЧК зубьями. Червячное колесо сидит на шпинделе 1 головки, а червяк — на валу 2 с рукояткой 4, имеющей два движения — D и L. Движение D позволяет соединять рукоятку с делительным лимбом (диском) 5, на обоих торцах которого по ряду концентрических окружностей равномерно располагается определенное число отверстий (делений). Например, на одной стороне диска есть 16, 17, 19, 21, 23, 29, 30 и 31 отверстия, а на другой — 33, 37, 39, 41, 43, 47, 49 и 54 отверстия. В делительных головках червяк на валу 2 всегда однозаходный, т. е. k — 1, a zЧK = 40, 80 или 120. Отношение N — zЧK/k называют характеристикой делительной головки. Вал 3 используют в других случаях.

Один оборот рукоятки вызовет поворот заготовки на k/zЧК = 1/N. При нарезании зубчатого колеса надо сделать пр оборотов рукоятки, т. е.

nр = k/N = 1/z или пр = N/z.

Характеристика головки N — const, a z = var, поэтому обычно np не вляется целым числом. Так, при N = 40, z = 15 получим nр =40/15 оборота. Настроив рукоятку движением L на окружность с 30 делениями, получим, что для поворота заготовки на 10/15 часть окружности требуется сделать два полных оборота и еще на 20/30 часть, т. е. на 20 делений (отверстий) окружности с 30-ю отверстиями.

Головка позволяет при простом делении повернуть заготовку на множество значений 1/z. однако не на все, требующиеся в производстве. Поэтому прибегают к более универсальной, так называемой дифференциальной настройке делительной головки.

Дифференциальная настройка головки проводится при выключенном стопоре 6 (см. рис. 157), ограничивающем подвижность лимба 5. Здесь (рис. 158) вращение рукоятки 4 также передается (через червячную передачу) шпинделю 1, но одновременно будет вращаться и лимб 5 делительной головки. Вращение ему передается с левого конца шпинделя через гитару со сменными колесами и коническую передачу с i = 1. Отношение чисел зубьев сменных колес гитары iг =(zazb1)/(za1zb).

Настройка головки заключается в определении числа оборотов рукоятки (как и при простом делении) и от ношения зубьев колес гитары iГ. Число оборотов рукоятки находят из известного соотношения, заменяя “неудобное” число зубьев близким к нему приближенным — znp. В рассмотренном выше примере было N — 40; допустим, z = 53. Ясно, что сделать поворот на 40/53 по имеющимся дискам нельзя. Примем z = 50; тогда nр=N/zпр=40/50.

Если воспользоваться окружностью с 30 отверстиями >